
Some Prismatic Dieudonne Crystals

Adam Holeman

These are lecture notes for a talk on prismatic Dieudonne theory. They haven’t been
proofread, so be careful.

1 Introduction:

The goal of these notes is two-fold: first, we want relatively concrete descriptions of the pris-
matic Dieudonne crystals associated to etale p-divisible groups and groups of multiplicative
type. The second goal is to begin the proof that the prismatic Dieudonne functor

M∆ : BT (R)→ DF (R)

is fully faithful.

Definition 1.1. A p-divisible group G = (Gn, in) is said to be etale if each Gn is finite
etale. It is said to be of multiplicative type if locally it’s isomorphic to µ∞p .

1.1 Main Results:

In order to state the main results of this section, it’s useful to describe the prismatic
Dieudonne crystal in a slightly different way, in terms of the p-adic Tate module.

Lemma 1.1. For any p-divisible group G over R, there’s a canonical isomorphism

M∆(G) ' Hom(R)qsyn(Tp(G),Opris).

The description of the Dieudonne crystals mimics almost exactly the analogous description
in the crystalline case. For the etale case, the results and arguments really are identi-
cal.

Theorem 1.2. Let G be an etale p-divisible group. Then the prismatic Dieudonne crystal
is given by

M∆(G) ' Hom(Tp(G),Zp)⊗Zp Opris.

In particular, M∆(Qp/Zp) ' Opris.
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It turns out we won’t be able to describeM∆(µp∞) in it’s full glory, but will obtain a nice
description upon restrictingM∆(µp∞) to the cyclotomic base prism (Zp[[q−1]], [p]q). After
this restriction, the crystal is freely generated by a single element - a q-deformation of the
logarithm. Define Zp(1) := Tp(µp∞). Then the q-logarithm defines a map of sheaves

lq : u−1(Zp(1))→ O∆

(this map only makes sense over the cyclotomic prism - we’ll discuss this in detail later)
which yields an element ofM∆(µp∞). Our description ofM∆(µp∞) then takes the following
form

Theorem 1.3 (Theorem 3.6). Over (Zp[[q − 1]], [p]q), the prismatic crystal

Hom(R)∆
(u−1(Zp(1)),O∆)

is freely generated by lq, and the Frobenius acts on this element via

lq → [p]qlq.

With these descriptions in hand, the action of M∆ on maps from Qp/Zp to µp∞ admits a
simple description in terms of the q logarithm. We can utilize this description to prove the
main result of this lecture:

Theorem 1.4. The prismatic Dieudonne functor induces a bijection

HomBT (R)(Qp/Zp, µp∞)
M∆−−→ HomDF (R)(M∆(µ∞p ),M∆(Qp/Zp)).

The proof relies on an explicit computation of the cyclotomic trace, thus importing some
rather heavy machinery from algebraic K-theory. I intend to devote the second half of the
lecture to unpacking this computation.

While the main theorem of todays lecture may seem to be a far cry from the desired fully-
fatihfulness of the Dieudonne functor, it turns out that by some witch-craft (inspired by
deJong and Scholze-Weinstein), one can reduce the proof of fully-faithfulness to this single
computation! Kirill will be our guide to this argument next week.

2 Etale p-divisible groups and their crystals:

Let’s begin by proving our promised description of the Dieudonne crystal of a general p-
divisible group in terms of the Tate module. The idea is that for any p-divisible group G,
we can pass to a ’universal cover’ G̃ which is a Qp-vector space. Namely, we define G̃ as
the inverse limit

G̃ := lim(...
×p−−→ G

×p−−→ G)

By construction, this is a Qp-vector space, and unsurprisingly we have the following:
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Lemma 2.1. There’s a short exact sequence

0→ TpG→ G̃→ G→ 0

in Ab(Rqsyn).

The proof of this lemma relies on ’repleteness’ of the topos Shv(Rqsyn) in order to pass
from the obvious short exact sequences

0→ G[pn]→ G→ G→ 0

to the limit. I omit the argument. With this in hand, we obtain the following:

Lemma 2.2. For any p-divisible group G, there’s a canonical isomorphism

M∆(G) ' Hom(Tp(G),Opris).

Proof. Since G̃ is a sheaf of Qp-vector spaces and Opris is p-complete, the entire derived
functor RHom(G̃,Opris) vanishes, so the long exact sequence induced from the short exact
sequence above yields the desired isomorphism.

Now there’s a canonical map of sheaves Zp → Opris, which induces a map

Hom(Tp(G),Zp)→ Hom(Tp(G),Opris) 'M∆(G)

of Zp-modules. By adjunction, this induces a map of Opris-modules

uG : Hom(Tp(G),Zp)⊗Zp Opris →M∆(G)

and the point is that when G is etale, this map is an isomorphism.

Theorem 2.3. If G is an etale p-divisible group, the map uG is an isomorphism. In
particular, M∆(Qp/Zp) ' Opris.

Proof. Recall, G is etale if and only if each Gn (in the defining inverse system) is finite
etale. Whence, each Gn defines a locally free Z/pnZ-module on (R)et, and by taking the
Tate module Tp(G) := limG[pn] = limGn, we see that Tp(G) is an etale-locally free Zp-
module. Since both the domain and codomain of uG are, in particular, etale sheaves, we
can localize in the etale topology. This reduces us to showing that the canonical map

Hom(Znp ,Zp)⊗Zp Opris → (Opris)n

is an isomorphism, where n is the height of G. This is clear.
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With this lemma in hand, we get a nice description of the action of M∆ on maps from Qp/Zp
to any other p-divisible group G. Recall, the Tate module of G can be described as Tp(G) '
Hom(R)qsyn(Qp/Zp, G), so applying M∆ to this hom-set, and using the identification of

M∆(Qp/Zp) ' Opris, we get a map

Tp(G)(R) ' Hom(R)qsyn(Qp/Zp, G)
M∆−−−→ HomDM(R)(Hom(Tp(G),Opris),Opris)

and this behaves exactly as you’d guess: namely, for x ∈ Tp(G), M∆(x) is given by evalu-
ating a given morphism f : Tp(G)→ Opris at x.

3 Multiplicative Groups and Their Crystals

3.1 Logarithms:

Recall, if k is a quasi-syntomic ring of characteristic p, the crystalline site (k/Zp)CRIS has
as objects triples (T,U, δ), where T is some scheme over k, U → T is a closed immersion,
defined by some ideal IT , and δ is the data of a divided power structure on this ideal. The
structure sheaf Ocrys is defined by

Ocrys((T,U, δ)) = OT (T )

and the ideal sheaf Icrys is defined by

Icrys((T,U, δ)) = Ker(OT (T )→ OU (U))

Let’s focus on the affine setting for a moment, so such a triple is a surjection of k-algebras
R′ → R and a PD ideal I. Since R′ is (p, I)-adically complete, we can associate to the
surjection a Teichmuller lift

[−] : R[ := lim
x→xp

R→ R′

given by sending (x1, x2, ....)→ limn x̃
pn
n where x̃n is just any lift of xn to R′. It turns out

this doesn’t depend on the choice of lift (thanks to (p, I)-completeness), and the compos-
ite

R[
[−]−−→ R′ → R

just projects onto the first coordinate, essentially by definition.

If we’re in the business of studying multiplicative p-divisible groups, we’re interested in
µp∞ . Define Zp(1) := Tp(µp∞) and notice that Zp(1)(R) ' Tp(R×) includes into R[ as the
elements whose first coordinate is equal to 1! So applying the Teichmuller lift, we land in
1 + I, and by the existence of divided powers on I, we can define the crystalline logarithm
log : 1 + I → Ocrys by

log(x) =
∞∑
n=1

(−1)n(n− 1)!γn(x− 1).

4



Combining these observations, we produce a map of sheaves log : Zp(1) → Ocrys, thus
yielding an element of the crystalline Dieudonne crystal

D(µp∞) = Ext1(icrys? µp∞ ,Ocrys) ' Hom(icrys? Zp(1),Ocrys).

The fundamental fact here is the following theorem of Berthelot-Green-Messing:

Theorem 3.1. The logarithm freely generates the Dieudonne crystal D(µp∞).

Unfortunately, when we enter the realm of quasi-syntomic rings, the logarithm is insufficient
for our purposes. If we were going to mimic the above story in the prismatic setting, we’d
need to produce some kind of ’logarithm’

Tp(R
×)→ ∆R,

but we have little hope of making sense of this in general. Of course, we know we can
restrict to quasi-regular semi-perfectoids, and at least in this setting ∆R is an actual ring
(and not just some object in a derived category), and we can actually make sense of the
Teichmuller lift: The canonical map R→ ∆R induces a map

[−]θ : R[ → ∆
[
R

[−]−−→ ∆R.

But now, if we try to carry out the above procedure we run into the following obstruction:
the crystalline logarithm made sense because we were handed a divided power structure as
part of the data of the crystalline site! Of course, if we restrict to characteristic p, we can
recover this data via the crystalline comparison, but then we might as well just work in
the crystalline setting from the get-go.

The solution to this conundrum is to work with Zcycp -algebras. Recall, Zcycp is obtained by
adjoining a compatible system of pn-th roots of unity to Zp, and then completing

Zcycp := (colimnZp[ζpn ])∧

This is a perfectoid ring, and the associated perfect prism (Ainf (Zcycp ), I) is the perfection
of the cyclotomic prism (Zp[[q−1]], [p]q). Here’s a fundamental fact about perfectoid rings,
proven in Bhatt and Scholze section 7.

Lemma 3.2 (Andre’s Lemma). Given a perfectoid ring R, there’s a quasi-syntomic cover
R→ S where S is absolutely integrally closed - i.e. every monic polynomial with coefficients
in S has a solution in S.

By Andre’s lemma given any quasi-syntomic ring, we can pass to a quasi-syntomic cover
over Zcycp (we just need to add a whole bunch of roots of unity), and since everything
we’re working with is a stack on the quasi-syntomic site, this imposes essentially no loss
of generality for the types of arguments we can make. On the other hand, as soon as
we’re working over Zcycp , we can produce the divided powers we missed so dearly a moment
ago.
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Lemma 3.3. Let (A, (ξ)) be a prism over (Zp[[q − 1]], [p]q) (so ξ = [p]q) and let x, y ∈ A
be rank 1 elements such that ϕ(x− y) ∈ ξA. Then the q-deformed divided power

γq,n(x− y) :=
(x− y)(x− qy)...(x− qn−1y)

[n]q!

exists, and lies in N≥nA.

So to reiterate the point made above: in our general setting of quasi-syntomic rings, the
quasi-regular semi-perfectoid Zcycp -algebras occupy a privileged position. They’re general
enough that we can bootstrap results about these rings up to all quasi-syntomic rings by
descent arguments, and yet have enough structure that we can extract some semblance
of divided powers, which opens the door to cohomological tools (q-deRham cohomology!)
heretofore unavailable to us.

Sketch of proof: Observe the following property of the cyclotomic prism: the sequence
(p, [p]q) is regular (such prisms are called ’transversal’). Any prism (B, I) over (Zp[[q −
1]], [p]q) where A is flat over Zp[[q − 1]] then necessarily satisfies this property, and we can
reduce to this case. Indeed, to name two elements x, y as in the statement of the lemma is
to name a map

Zp[[q − 1]] 〈x, y, λ〉 /(xp − yp − ξλ)→ A

and Zp[[q − 1]] 〈x, y, λ〉 /(xp − yp − ξλ) is flat over Zp[[q − 1]]. So we may assume that
(A, I) is a transversal prism. The import of this reduction comes from the following facts
whose proof we will omit (their proofs can be found in the paper of Anschutz-LeBras on
the cyclotomic trace).

1. If (A, (ξ)) is a transversal prism, then the sequences (ϕr−1(ξ), ξ) are regular for all
r ≥ 2.

2. Let n be an integer and for all r ≥ 0, define integers ar, br ≥ 0, br < pr such that

n = arp
r + br.

Then
[n]q! = u

∏
r≥1

(ϕr−1(ξ))ar

for some unit u ∈ Zp[[q − 1]].

Appealing to the second fact, we see that it suffices to show that (x − y)...(x − qn−1y) is
divisible by

∏
r≥1 ϕ

r−1(ξ)ar , and by the first fact, it suffices to show that each factor of

this product divides (x− y)...(x− qn−1y). To show this, it suffices to assume br = 0 - i.e.
n = arp

r.
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The idea now is to split the product (x− y)...(x− qn−1y) up in to ar distinct factors, and
show each factor is divisible by ϕr−1(ξ). Namely, for 0 ≤ k < ar, define

zk = (x− qkpry)(x− qkpr+1y)...(x− q(k+1)pr−1y).

Now observe that, as a polynomial in q, ϕr−1([p]q) is the pr-th cyclotomic polynomial. So
in particular, we have the congruence

xp
r − ypr = (x− y)(x− qy)...(x− qpr−1y) modϕr−1([p]q).

Substituting qkp
r
y in place of y in the above congruence, we obtain congruences

zk = xp
r − qlkypr modϕr−1(ξ)

where lk = λkp
r for some λk. So we are reduced to showing that xp

r − qlkypr is divisible
by ϕr−1(ξ).

Write
xp

r − qlkypr = xp
r − ypr − (qlk − 1)yp

r

Now by our hypothesis that x and y are rank 1 and ϕ(x− y) ∈ (ξ), we see

xp
r − ypr = ϕr(x− y) = ϕr−1(xp − yp)

is divisible by ϕr−1(ξ). On the other hand,

qlk − 1 = ϕr−1(ξ)
qlk − 1

qpr − 1
(q − 1)

since lk = λkp
r. Thus zk is divisible by ϕr−1(ξ), as was to be shown.

All that remains is the statement about the Nygaard filtration. We know that ϕ(x− qy) ∈
(ξ) by hypothesis, so it suffices to show ϕ([n]q!) is not divisible by ξ. But again appealing
to fact number 2 above, we see that

ϕ([n]q!) = u
∏
r≥1

ϕr(ξ)

and the ϕr(ξ) are not divisible by ξ by fact 1, so we win.

Notice, if we base change to Zp, in effect setting q = 1, then [n]q = n and γn,q =
(x− y)n

n!
is the usual divided power element on Zp. So working with quasi-regular semi-perfectoid
Zcycp -algebras effectively lifts the divided power structures from the characteristic p case to
our new setting. Furthermore, we can now build our logarithm!
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Lemma 3.4. Let (A, I) be a prism over (Zp[[q − 1]], [p]q) and let x ∈ 1 +N≥1A be a rank
1 element. Then the q-logarithm

logq(x) :=
∞∑
n=1

(−1)n−1q
n(n−1)

2
(x− 1)...(x− qn−1)

[n]q

is well defined and converges. Furthermore, modulo N≥2A, the q-logarithm assumes the
form

logq(x) = x− 1 modN≥2A.

Proof. We simply appeal to the existence of q-divided powers to rewrite the sum as

logq(x) =

∞∑
n=1

(−1)n−1q
n(n−1)

2 [n− 1]q!γn,q(x− 1).

Now by [p]q-adic completeness (our prism lies over the cyclotomic prism!) we see that
[n− 1]q!→ 0 as n→∞, so the sum converges.

Now we’re in a position to attempt to replicate the successes of the crystalline story in
our more general setting. The first step is to use the q-logarithm to define a map of
sheaves

lq : u−1(Zp(1))→ O∆,

on (Zcycp )∆. We just need to verify the hypotheses on the ranks of the specific ele-
ments.

Construction: Let R be a quasi-regular semi-perfectoid Zcycp -algebra. For any (A, I) ∈
(R)∆, we identify u−1(Zp(1))(A, I) ' Tp((A/I)×). Now the surjection A → A/I yields a
Teichmuller lift

(A/I)[
[−]−−→ A

and we define the map
[−]θ : u−1(Zp(1))(A, I)→ A

as the composite

Tp((A/I)×)→ (A/I)[
(−)

1
p

−−−→ (A/I)[
[−]−−→ A.

Lemma 3.5. For any x ∈ Tp((A/I)×), the element [x]θ ∈ A is of rank 1 and lies in
1 +N≥1A.
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Proof. To see that it’s rank 1, simply observe that for any a ∈ A, applying δ to the ap lies
in pA;

δ(ap) = pap
2−pδ(a) +

p−1∑
i=1

pap
i−1
δ(a)δ(ap−i).

In particular, any element x that admits arbitrarily large p-th roots satisfies

δ(x) ∈
⋂
n

(pn) = 0.

Of course, any element in the image of the Teichmuller map admits arbitrarily large p-
th roots essentially by definition. So [x]θ is of rank 1. For the second claim, just apply
Frobenius to see

ϕ([x]θ) = [x] = 1 mod[p]qA

so the claim follows.

Of course, one of our main tools is to bootstrap the arguments of Berthelot-Breen-Messing
up to the quasi-syntomic case, so we had better check the compatibility of our q-logarithm
with the crystalline logarithm in the characteristic p-case. Let R be a quasi-regular semi-
perfectoid ring of characteristic p. Recall, the crystalline period ring Acrys(R) is the uni-
versal p-complete PD-thickening of R. Since p is a non-zero divisor in Acrys(R) and this
ring is equipped with a canonical Frobenius lift, we see that (Acrys(R), (p)) is a prism, and
thus by the universal property of prismatic cohomology, we get a canonical map

∆R → Acrys(R)

compatible with Frobenius. This map turns out to be an isomorphism, and carries 1 +
N≥1∆R to 1 + Icrys(R).

In the case where R = W (R[)/(x) for some non-zero divisor, we can compute both the
prismatic cohomology, as well as the universal PD-thickening. Both are given by prismatic
envelopes:

∆R ' ∆R/W (R[) 'W (R[){x
p
}∧

and

Acrys(R) 'W (R[){x
p

p
}∧ ' ∆R ⊗W (R[),ϕW (R[).

So for example, if R = k is a perfect field of characteristic p, then the isomorphism

W (k)→ Acrys(k) 'W (k)

is given by the Frobenius. In particular, we see that the diagram of Teichmuller lifts
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1 +N≥1∆k

Tp(k
×)

1 + Icrys(k)

commutes, which tells us that the corresponding logarithms agree as well, when R is a
perfect field of characteristic p. This will suffice for our reductions.

3.2 The Dieudonne Crystals of Multiplicative Groups:

So we’ve succeeded in constructing a logarithm

lq : u−1(Zp(1))→ O∆

for any QRSPerf Zcycp -algebra.

Theorem 3.6. Over (A, I) = (Zp[[q − 1]], ([p]q)), the prismatic crystal

Hom(R)∆
(u−1(Zp(1)),O∆)

is free of rank 1, generated by lq. Moreover, the Frobenius sends

lq → [p]qlq.

Observe that since Ĝm/µp∞ is uniquely p-divisible, we can compute the crystal via

Hom(R)∆
(u−1(Zp(1)),O∆) ' Ext1(R)∆

(u−1(Ĝm),O∆).

Proof. To show that this is free, it suffices to see that the global ext groups

Ext1(u−1(Ĝm)
∣∣
(B,J)

,O∆)

are free of rank 1 for all (B, J) over the cyclotomic base (so the Ext is taken in the localized
site (R)∆/(B, J)), since this shows that all sections of the sheaf are free. At this point, we
already know that the sheaf in question is a crystal, and so satisfies base change. Thus, we
can even reduce to the case of (A, I).

Now to compute Ext1, we want to use the Berthelot-Breen-Messing spectral sequence to
reduce to a computation of prismatic cohomology. The terms of the spectral sequence are
of the form H i(Ĝj

m,O∆) (or products of these)
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Furthermore, Ĝm ' Spf(R 〈x, y〉 /(xy−1)), and thus the base change is given by Ĝm×Spf(R)

Spf(A/I) ' Spf(Zp[ζp] 〈x, y〉 /(xy − 1)). The key input is we now can appeal to a com-
parison (a theorem of Bhatt and Scholze) with q-crystalline cohomology:

∆Ĝm/A
' qΩR̃/Zp[[q−1]]

where R̃ = Zp[[q − 1]] 〈x, y〉 /(xy − 1) (the omission of the root of unity is not a mistake -
this is built into the comparison isomorphism). By choosing etale coordinates

Zp[[q − 1]] 〈x〉 x→x−−−→ R̃

we can compute the q-crystalline cohomology via an extremely explicit complex - the q-
deRham complex. This takes the form

Zp[[q − 1]] 〈x, y〉 /(xy − 1)
∆q−−→ Zp[[q − 1]] 〈x, y〉 /(xy − 1)dqx

where ∆q(f(x)) = f(qx)−f(x)
qx−x dqx.

The zeroth cohomology of this complex is just Zp[[q − 1]], and thus the bottom row of the
BBM spectral sequence is exact by a direct computation, so

Ext1(u−1Ĝm,O∆) ' Ker(H1(ĜmO∆)→ H1(Ĝ×2
m ,O∆)).

The element lq in the Ext group is sent to the class represented by
dqx
x , which generates a

free submodule of H1. So the natural map

Zp[[q − 1]]
a→a·lq−−−−→ Ext1(u−1Ĝm,Opris)

is injective.

We know from section 4.6 that the Ext group in question is finitely generated. Thus, to
show that in fact it’s generated by lq, we can appeal to Nakayama’s lemma to pass to
the case of (B, J) = (W (k), (p)) where k is an algebraically closed field of characteristic
p. Then by the crystalline comparison from section 4.3, the prismatic Dieudonne crystal
is isomorphic to the crystalline Dieudonne crystal, and the q-logarithm reduces to the
crystalline logarithm - which we know generates the crystalline Dieudonne crystal! So we
win.

Finally, the statement about the Frobenius follows by direct computation. Namely, we can
express the q-logarithm in terms of the usual logarithm, via

logq(x) =
q − 1

log(q)
log(x)
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where log(x) =
∑∞

n=1(−1)n−1 x−1
n (this equality takes place not inB but in B[1/p][[x−1]]∧).

Applying Frobenius, we obtain

ϕ(logq(x)) =
qp − 1

log(qp)
log(xp) =

qp − 1

q − 1

q − 1

logq
log(x) = [p]qlogq(x)

as desired.

As a bonus, we obtain a simplified description of the Dieudonne crystals of any p-divisible
group of multiplicative type, provided R is a Zp[ζp]-algebra.

Corollary 3.6.1. Let G be a multiplicative p-divisible group over R. Then there is a
canonical isomorphism

u−1(Hom(G,µp∞))⊗Zp O∆ ' Ext1(R)∆
(u−1G,O∆)

∣∣
(R/A)∆

given by sending f : G→ µp∞ to the evaluation of the morphism induced by f .

4 Towards Fully Faithfulness:

Our descriptions of M∆(µp∞) and M∆(Qp/Zp) lend themselves to a simple expression of
the hom set between these modules:

Lemma 4.1. For any quasi-regular semi-perfectoid Zcycp -algebra R, there’s a canonical
identification

HomDM(R)(M∆(µp∞),M∆(Qp/Zp)) ' ∆ϕ=ξ̂
R .

Proof. We know M∆(Qp/Zp) ' ∆R, and since M∆(µp∞) is freely generated by lq, any be-
tween the modules is determined by the image of lq. Of course, any morphism of Dieudonne
modules must respect the Frobenius endomorphism, so the only constraint on the image
of lq is imposed by the action of Frobenius, which we know to act on lq via multiplication

by ξ̂ = [p]q. The identification follows.

Finally, at the end of our discussion of etale groups, we gave a description of the action
of M∆ on Hom(Qp/Zp,−). Combining this description with the previous lemma, we
obtain:

Corollary 4.1.1. The action of M∆ on Hom(Qp/Zp, µp∞) is identified with the q-logarithm

Hom(Qp/Zp, µp∞) HomDM(R)(M∆(µp∞),M∆(Qp/Zp))

Zp(1) ∆ϕ=ξ̂
R

M∆

' '

lq
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To prove that this map is a bijection, we need to appeal to the topological description
of prismatic cohomology. By work of Bhatt-Morrow-Scholze, the Nygaard completed
prismatic cohomology of any quasi-regular semi-perfectoid ring can be identified with
π0(TC−(R;Zp)). This identification preserves the Nygaard filtration on both sides (where
for π0(TC−) the ’Nygaard filtration’ is the double-speed abutment filtration of the homo-
topy fixed point spectral sequence), and is compatible with Frobenius. The higher pieces of
the Nygaard filtration can be identified with the higher homotopy groups of TC−(R;Zp),
and in particular, the fiber sequence

TC → TC−
can−ϕhT

−−−−−−→ TP

identifies π2(TC(R;Zp)) ' ∆̂ϕ=ξ
R .

Now these topological theories play the role of approximating algebraic K-theory. In par-
ticular, theres a map

Ctr : K(R;Zp)→ TC(R;Zp)

called the cyclotomic trace that plays a central role in modern algebraic K-theory - indeed,
in many cases it can be shown to be an isomorphism!

Now, the p-adic Tate module admits a map to degree 2 p-adic K theory for very elemen-
tary reasons, and the amazing fact is that the map we just described on the hom sets of
the Dieudonne modules is the cyclotomic trace in degree 2. Recall, we defined lq by the
formula

lq(x) = logq([x
1
p ]).

For simplicity of notation, we’ll denote by −lq the map

−lq(x) = logq([x
− 1

p ]).

Lemma 4.2. For any quasi-regular semi-perfectoid Zcycp -algebra R, there’s a commutative
diagram

Tp(R
×) ∆̂ϕ=ξ̂

R

π2(K(R;Zp)) π2(TC(R;Zp))

−lq

'

Ctr

We’re now in a position to state and prove our main theorem.

Theorem 4.3. For any quasi-regular semi-perfectoid ring R, the map

Hom(R)qsyn(Qp/Zp, µp∞)→ HomDM(R)(M∆(µp∞),M∆(Qp/Zp))

is a bijection.
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Proof. Both the target and domain satisfy quasi-syntomic descent in R. So we can prove
the assertion after passing to a quasi-syntomic cover, and thus by Andre’s lemma we can
assume that R is a Zcycp -algebra. Hence, we are reduced to showing that

lq : Tp(R
×)→ ∆ϕ=ξ̂

R

is a bijection. Since the composite

Tp(R
×)→ ∆̂ϕ=ξ̂

R

identifies with the cyclotomic trace, we can appeal to work of Clausen-Mathew-Morrow to
assert that it’s a bijection. So it suffices to show that

∆ϕ=ξ̂
R

i−→ ∆̂ϕ=ξ̂
R

is injective. Notice that by definition of the Nygaard filtration, the Frobenius factors
through a map ψ : ∆̂R → ∆R.

Now, for any x ∈ ∆ϕ=ξ̂
R , if i(x) = 0, then

0 = ψ(0) = ψ(i(x)) = ϕ(x) = ξ̂x.

But ξ̂ is a non-zero divisor (by definition of prism), and thus x = 0. So i is injective, and
we declare victory.

We’ll now sketch the proof of the computation of the cyclotomic trace. The full proof is
beyond the scope of these notes.

(sketch of lemma). The only fact that we need about the cyclotomic trace is that it lifts
the Dennis trace, which is a map

Dtr : K(R;Zp)→ THH(R;Zp).

Bhatt, Morrow, and Scholze identify π2i(THH(R;Zp)) with the i-th graded piece of the
Nygaard filtration on (completed) prismatic cohomology. Furthermore, since R is quasi-

regular semi-perfectoid, Ainf (R)
θ−→ R is a surjection, so if J is the kernel, the HKR theorem

implies we get an identification

π2(THH(R;Zp)) ' J/J2.

So we can summarize all the maps and identification that are playing a role in one big
diagram:

14



Tp(R
×) π2(K(R;Zp)) π2(TC(R;Zp)) ∆̂ϕ=ξ̂

R

π2(THH(R;Zp)) N≥1∆̂R/N≥2∆̂R

J/J2

Ctr

Dtr

'

can

'

'

The proof now proceeds in essentially three steps. The first step is to reduce to a case
where the natural projection

∆̂ϕ=ξ̂
R → N≥1∆̂R/N≥2∆̂R

is an injection. The reduction goes as follows. An element x ∈ Tp(R×) is just a compatible
system of pn-th roots of unity. So since all the maps in this diagram are natural in R, we
can pass to the universal case

R′ := Zp
〈
x

1
p∞
〉
/(x− 1).

It turns out that the associated prism (∆R′ , ξ̂) satisfies the property that (p, ξ̂) is a regular
sequence. For any prism of this form, the reduction map

Aϕ=ξ̂ → N≥1A/N≥2A

is injective. This takes some work, but it is a true fact.

Once we’ve made this reduction, it suffices to show that −lq = Ctr modulo N≥2∆̂R.

The second step is then to identify the q-logarithm modulo N≥2∆̂R. Since all the q-divided
powers γn,q lie in the n-th stage of the filtration, the logarithm assumes the form

lq(x) = [x]− 1 modN≥2∆̂R.

In particular, the negative logarithm is given by

−lq(x) = [x−1]− 1 modN≥2∆̂R.

The final step utilize the first step once again to reduce to computing the Dennis trace
rather than the cyclotomic trace, which turns out to be something we can get our hands
on. Here we make use of the identification π2(THH(R;Zp)) ' I/I2 and compute the
composite

Tp(R
×)→ π2(K(R;Zp))

Dtr−−→ π2(THH(R;Zp)) ' J/J2
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to be
x→ [x−1]− 1.

The main point of this computation is a computation of the p-completed Hurewicz map

π2(BG∧p )
h−→ π2((Z[BG])∧p )

for any abelian group G. We then apply this computation to

Tp(R
×) = π2((BR×)∧p )→ π2(Z[BR×]∧p )→ π2(HH(R;Zp)).

Of course, there’s some minor book-keeping needed to make sure that the map

J/J2 → N≥1∆̂R/N≥2∆̂R

coming from the two different identification of π2(THH(R;Zp)) does what you hope it
does, but it does.
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